Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 903498, 2022.
Article in English | MEDLINE | ID: covidwho-1903026

ABSTRACT

Autophagy is a homeostatic process responsible for the self-digestion of intracellular components and antimicrobial defense by inducing the degradation of pathogens into autophagolysosomes. Recent findings suggest an involvement of this process in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the role of autophagy in the immunological mechanisms of coronavirus disease 2019 (COVID-19) pathogenesis remains largely unexplored. This study reveals the presence of autophagy defects in peripheral immune cells from COVID-19 patients. The impairment of the autophagy process resulted in a higher percentage of lymphocytes undergoing apoptosis in COVID-19 patients. Moreover, the inverse correlation between autophagy markers levels and peripheral lymphocyte counts in COVID-19 patients confirms how a defect in autophagy might contribute to lymphopenia, causing a reduction in the activation of viral defense. These results provided intriguing data that could help in understanding the cellular underlying mechanisms in COVID-19 infection, especially in severe forms.


Subject(s)
COVID-19 , Lymphopenia , Autophagy , Humans , Leukocytes, Mononuclear , SARS-CoV-2
2.
Front Pharmacol ; 11: 569849, 2020.
Article in English | MEDLINE | ID: covidwho-972744

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the novel coronavirus, causing coronavirus disease 2019 (COVID-19). During virus infection, several pro-inflammatory cytokines are produced, leading to the "cytokine storm." Among these, interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and IL-1ß seem to have a central role in the progression and exacerbation of the disease, leading to the recruitment of immune cells to infection sites. Autophagy is an evolutionarily conserved lysosomal degradation pathway involved in different aspects of lymphocytes functionality. The involvement of IL-6, TNF-α, and IL-1ß in autophagy modulation has recently been demonstrated. Moreover, preliminary studies showed that SARS-CoV-2 could infect lymphocytes, playing a role in the modulation of autophagy. Several anti-rheumatic drugs, now proposed for the treatment of COVID-19, could modulate autophagy in lymphocytes, highlighting the therapeutic potential of targeting autophagy in SARS-CoV-2 infection.

3.
Front Immunol ; 11: 1439, 2020.
Article in English | MEDLINE | ID: covidwho-644233

ABSTRACT

In December 2019, following a cluster of pneumonia cases in China caused by a novel coronavirus (CoV), named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infection disseminated worldwide and, on March 11th, 2020, the World Health Organization officially declared the pandemic of the relevant disease named coronavirus disease 2019 (COVID-19). In Europe, Italy was the first country facing a true health policy emergency, and, as at 6.00 p.m. on May 2nd, 2020, there have been more than 209,300 confirmed cases of COVID-19. Due to the increasing number of patients experiencing a severe outcome, global scientific efforts are ongoing to find the most appropriate treatment. The usefulness of specific anti-rheumatic drugs came out as a promising treatment option together with antiviral drugs, anticoagulants, and symptomatic and respiratory support. For this reason, we feel a duty to share our experience and our knowledge on the use of these drugs in the immune-rheumatologic field, providing in this review the rationale for their use in the COVID-19 pandemic.


Subject(s)
Betacoronavirus/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Adaptive Immunity/drug effects , Adult , Anticoagulants/therapeutic use , Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Hydroxychloroquine/therapeutic use , Immunity, Innate/drug effects , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL